Yandex.Cloud
  • Services
  • Why Yandex.Cloud
  • Pricing
  • Documentation
  • Contact us
Get started
Yandex DataLens
  • Getting started
  • Use cases
    • All use cases
    • Visualizing data from a CSV file
    • Visualizing data from a ClickHouse database
    • Visualizing data from Yandex.Metriсa
    • Visualizing data from Yandex.Metrica Logs API
    • Publishing a chart with a map from a CSV file to DataLens Public
    • Visualizing data from AppMetrica
    • Visualizing geodata from a CSV file
  • Step-by-step instructions
    • All instructions
    • Working with connections
      • Creating a ClickHouse connection
      • Creating a connection to a CSV file
      • Creating a MySQL connection
      • Creating a PostgreSQL connection
      • Creating an MS SQL Server connection
      • Creating an Oracle Database connection
      • Creating a Yandex.Metrica API connection
      • Creating a Yandex.Metrica Logs API connection
      • Creating an AppMetrica connection
      • Managing connection access
    • Working with datasets
      • Create dataset
      • Creating a data field
      • Creating a calculated data field
      • Updating fields in datasets
      • Dataset materialization
      • Managing dataset access
      • Managing access to data rows
    • Working with charts
      • Creating a line chart
      • Creating an area chart
      • Creating a pie chart
      • Creating a column chart
      • Creating a bar chart
      • Creating a map
      • Creating a table
      • Creating a pivot table
      • Publishing a chart
      • Managing chart access
    • Working with dashboards
      • Creating dashboards
      • Adding charts to dashboards
      • Adding selectors to dashboards
      • Publishing dashboards
      • Managing dashboard access
    • Working with permissions
      • Granting permissions
      • Deleting permissions
      • Request permissions
  • Concepts
    • Overview
    • Connections
    • Data types
    • Datasets
      • Overview
      • Data model
      • Dataset settings
    • Charts
    • Dashboards
    • Using Markdown in DataLens
    • DataLens Public
    • Calculated fields
    • Marketplace
    • Backups in DataLens
    • Quotas and limits
  • Access management
    • Managing access to DataLens
    • Managing access at the data row level
  • Pricing policy
  • Function reference
    • All Functions
    • Aggregate functions
      • Overview
      • ALL_CONCAT
      • ANY
      • ARG_MAX
      • ARG_MIN
      • AVG
      • AVG_IF
      • COUNT
      • COUNTD
      • COUNTD_APPROX
      • COUNTD_IF
      • COUNT_IF
      • MAX
      • MEDIAN
      • MIN
      • QUANTILE
      • QUANTILE_APPROX
      • STDEV
      • STDEVP
      • SUM
      • SUM_IF
      • TOP_CONCAT
      • VAR
      • VARP
    • Date/Time functions
      • Overview
      • DATEADD
      • DATEPART
      • DATETRUNC
      • DAY
      • DAYOFWEEK
      • HOUR
      • MINUTE
      • MONTH
      • NOW
      • SECOND
      • TODAY
      • WEEK
      • YEAR
    • Geographical functions
      • Overview
      • GEOCODE
      • GEOINFO
      • TOPONYM_TO_GEOPOINT
      • TOPONYM_TO_GEOPOLYGON
    • Logical functions
      • Overview
      • CASE
      • IF
      • IFNULL
      • ISNULL
      • ZN
    • Text markup functions
      • Overview
      • BOLD
      • ITALIC
      • MARKUP
      • URL
    • Mathematical functions
      • Overview
      • ABS
      • ACOS
      • ASIN
      • ATAN
      • ATAN2
      • CEILING
      • COS
      • COT
      • DEGREES
      • DIV
      • EXP
      • FLOOR
      • GREATEST
      • LEAST
      • LN
      • LOG
      • LOG10
      • PI
      • POWER
      • RADIANS
      • ROUND
      • SIGN
      • SIN
      • SQRT
      • SQUARE
      • TAN
    • Operators
      • Overview
      • AND
      • Addition and concatenation (+)
      • BETWEEN
      • Comparison
      • Division (/)
      • IN
      • IS FALSE
      • IS TRUE
      • LIKE
      • Modulo (%)
      • Multiplication (*)
      • NOT
      • Negation (-)
      • OR
      • Power (^)
      • Subtraction (-)
    • String functions
      • Overview
      • ASCII
      • CHAR
      • CONCAT
      • CONTAINS
      • ENDSWITH
      • FIND
      • ICONTAINS
      • IENDSWITH
      • ISTARTSWITH
      • LEFT
      • LEN
      • LOWER
      • LTRIM
      • REGEXP_EXTRACT
      • REGEXP_EXTRACT_NTH
      • REGEXP_MATCH
      • REGEXP_REPLACE
      • REPLACE
      • RIGHT
      • RTRIM
      • SPACE
      • SPLIT
      • STARTSWITH
      • SUBSTR
      • TRIM
      • UPPER
      • UTF8
    • Time series functions
      • Overview
      • AGO
      • AT_DATE
    • Type conversion functions
      • Overview
      • BOOL
      • DATE
      • DATETIME
      • DATETIME_PARSE
      • DATE_PARSE
      • DB_CAST
      • FLOAT
      • GEOPOINT
      • GEOPOLYGON
      • INT
      • STR
    • Window functions
      • Overview
      • AVG
      • AVG_IF
      • COUNT
      • COUNT_IF
      • LAG
      • MAVG
      • MAX
      • MCOUNT
      • MIN
      • MMAX
      • MMIN
      • MSUM
      • RANK
      • RANK_DENSE
      • RANK_PERCENTILE
      • RANK_UNIQUE
      • RAVG
      • RCOUNT
      • RMAX
      • RMIN
      • RSUM
      • SUM
      • SUM_IF
    • Function Availability
  • Questions and answers
  1. Function reference
  2. Date/Time functions
  3. DATETRUNC

DATETRUNC

    Syntax

    DATETRUNC( datetime, unit [ , number ] )
    

    Description

    Rounds datetime down to the given unit. If optional number is given, then the value is rounded down to a number multiple of unit (omitting number is the same as number = 1).

    Supported units:

    • "second";
    • "minute";
    • "hour";
    • "day" (acts as the day of the year if number is specified);
    • "week";
    • "month";
    • "year".

    Argument types:

    • datetime — Date | Datetime
    • unit — String
    • number — Number (whole)

    Return type: Same type as (datetime)

    Note

    Only constant values are accepted for arguments (unit, number).

    Note

    The function with three arguments is only available for the sources Materialized Dataset, ClickHouse version 19.3.3 or higher.

    Examples

    DATETRUNC(#2018-07-12 11:07:13#, "minute") = #2018-07-12 11:07:00#
    
    DATETRUNC(#2018-07-12#, "year", 5) = #2015-01-01#
    
    DATETRUNC(#2018-07-12 11:07:13#, "second", 5) = #2018-07-12 11:07:10#
    
    DATETRUNC(#2018-07-12 11:07:13#, "month", 4) = #2018-05-01 00:00:00#
    

    Data source support

    Materialized Dataset, ClickHouse 1.1, Oracle Database 12c (12.1), PostgreSQL 9.3.

    Language
    Careers
    Privacy policy
    Terms of use
    © 2021 Yandex.Cloud LLC