Detecting faces in images

Face detection is currently at the Preview stage.

To detect faces in a photo, use the Face Detection feature.

In the batchAnalyze method, set the type property to FACE_DETECTION.


Before getting started

To try the examples in this section:

  1. On the billing page, make sure that the payment account has the ACTIVE or TRIAL_ACTIVE status. If you don't have a payment account, create one.
  2. Make sure you have installed the cURL utility that is used in the examples.
  3. Get the ID of any folder that your account is granted the editor role or higher for.
  4. Get an IAM token for your Yandex account.

To perform these operations on behalf of the service account:

  1. Assign the editor role or a higher role to the service account for the folder where it was created.
  2. Do not specify the folder ID in the request: the service uses the folder where the service account was created.
  3. Choose the authentication method: get an IAM token or API key.

Find faces in an image

  1. Prepare an image file that meets the requirements:

    • Supported file formats: JPEG, PNG, PDF.

      The MIME-type of the file is specified in the mime_type property. The default is image.

    • Maximum file size: 1 MB.

    • Image size should not exceed 20 MP (length x width).


    Need an image? Download a sample.

  2. Encode the file as Base64:

    $ base64 -i input.jpg > output.txt
    C:> Base64.exe -e input.jpg > output.txt
    [Convert]::ToBase64String([IO.File]::ReadAllBytes("./input.jpg")) > output.txt
    # Импортируйте библиотеку для кодирования в Base64
    import base64
    # Создайте функцию, которая кодирует файл и возвращает результат.
    def encode_file(file):
      file_content =
      return base64.b64encode(file_content)
    // Считайте содержимое файла в память.
    var fs = require('fs');
    var file = fs.readFileSync('/path/to/file');
    // Получите содержимое файла в формате Base64.
    var encoded = Buffer.from(file).toString('base64');
    // Импортируйте библиотеку для кодирования в Base64.
    import org.apache.commons.codec.binary.Base64;
    // Получите содержимое файла в формате Base64.
    byte[] fileData = Base64.encodeBase64(yourFile.getBytes());
    import (
    // Откройте файл
    f, _ := os.Open("/path/to/file")
    // Прочитайте содержимое файла.
    reader := bufio.NewReader(f)
    content, _ := ioutil.ReadAll(reader)
    // Получите содержимое файла в формате Base64.
  3. Create a file with the request body (for example, body.json). In the content property, specify a Base64-encoded image:


        "folderId": "b1gvmob95yysaplct532",
        "analyze_specs": [{
            "content": "iVBORw0KGgo...",
            "features": [{
                "type": "FACE_DETECTION"
  4. Send a request using the batchAnalyze method and save the response in a file, such as output.json:

    $ export IAM_TOKEN=CggaATEVAgA...
    $ curl -X POST \
        -H "Content-Type: application/json" \
        -H "Authorization: Bearer ${IAM_TOKEN}" \
        -d '@body.json' \ > output.json

Ready-to-use function for sending requests in bash

  1. If you don't have the Yandex.Cloud command line interface yet, install it.

  2. Copy the function to the terminal:

    vision_face_detection() {
        curl -H "Authorization: Bearer `yc iam create-token`" \
        "" \
        -d @<(cat << EOF
        "folderId": "`yc config get folder-id`",
        "analyze_specs": [{
            "content": "`base64 -i $1`",
            "features": [{
                "type": "FACE_DETECTION"


    • yc iam create-token: get an IAM token.
    • -d @<(cat EOF ... EOF): create a request body.
    • yc config get folder-id: get the ID of the default folder selected in the CLI.
    • base64 -i $1: Base64 encoding of the image passed in the function arguments.
  3. Now you can call this function by passing the image path in the arguments:

    vision_face_detection path/to/image.jpg