Yandex.Cloud
  • Services
  • Why Yandex.Cloud
  • Solutions
  • Pricing
  • Documentation
  • Contact us
Get started
Yandex DataLens
  • Getting started
  • Use cases
    • All use cases
    • Visualizing data from a CSV file
    • Visualizing data from a ClickHouse database
    • Visualizing data from Yandex.Metriсa
    • Visualizing data from Yandex.Metrica Logs API
    • Publishing a chart with a map from a CSV file to DataLens Public
    • Visualizing data from AppMetrica
    • Visualizing geodata from a CSV file
  • Step-by-step instructions
    • All instructions
    • Working with connections
      • Creating a ClickHouse connection
      • Creating a connection to a CSV file
      • Creating a MySQL connection
      • Creating a PostgreSQL connection
      • Creating an MS SQL Server connection
      • Creating an Oracle Database connection
      • Creating a Yandex.Metrica API connection
      • Creating a Yandex.Metrica Logs API connection
      • Creating an AppMetrica connection
      • Managing connection access
    • Working with datasets
      • Create dataset
      • Creating a data field
      • Creating a calculated data field
      • Updating fields in datasets
      • Dataset materialization
      • Managing dataset access
      • Managing access to data rows
    • Working with charts
      • Creating a line chart
      • Creating an area chart
      • Creating a pie chart
      • Creating a column chart
      • Creating a bar chart
      • Creating a map
      • Creating a table
      • Creating a pivot table
      • Publishing a chart
      • Managing chart access
    • Working with dashboards
      • Creating dashboards
      • Adding charts to dashboards
      • Adding selectors to dashboards
      • Publishing dashboards
      • Managing dashboard access
    • Working with permissions
      • Granting permissions
      • Deleting permissions
      • Request permissions
  • Concepts
    • Overview
    • Connections
    • Data types
    • Datasets
      • Overview
      • Data model
      • Dataset settings
    • Charts
    • Dashboards
    • Using Markdown in DataLens
    • DataLens Public
    • Calculated fields
    • Marketplace
    • Backups in DataLens
    • Quotas and limits
  • Access management
    • Managing access to DataLens
    • Managing access at the data row level
  • Pricing policy
    • Current pricing policy
    • Archive
      • Policy before March 1, 2021
  • Function reference
    • All Functions
    • Aggregate functions
      • Overview
      • ALL_CONCAT
      • ANY
      • ARG_MAX
      • ARG_MIN
      • AVG
      • AVG_IF
      • COUNT
      • COUNTD
      • COUNTD_APPROX
      • COUNTD_IF
      • COUNT_IF
      • MAX
      • MEDIAN
      • MIN
      • QUANTILE
      • QUANTILE_APPROX
      • STDEV
      • STDEVP
      • SUM
      • SUM_IF
      • TOP_CONCAT
      • VAR
      • VARP
    • Date/Time functions
      • Overview
      • DATEADD
      • DATEPART
      • DATETRUNC
      • DAY
      • DAYOFWEEK
      • HOUR
      • MINUTE
      • MONTH
      • NOW
      • SECOND
      • TODAY
      • WEEK
      • YEAR
    • Geographical functions
      • Overview
      • GEOCODE
      • GEOINFO
      • TOPONYM_TO_GEOPOINT
      • TOPONYM_TO_GEOPOLYGON
    • Logical functions
      • Overview
      • CASE
      • IF
      • IFNULL
      • ISNULL
      • ZN
    • Text markup functions
      • Overview
      • BOLD
      • ITALIC
      • MARKUP
      • URL
    • Mathematical functions
      • Overview
      • ABS
      • ACOS
      • ASIN
      • ATAN
      • ATAN2
      • CEILING
      • COS
      • COT
      • DEGREES
      • DIV
      • EXP
      • FLOOR
      • GREATEST
      • LEAST
      • LN
      • LOG
      • LOG10
      • PI
      • POWER
      • RADIANS
      • ROUND
      • SIGN
      • SIN
      • SQRT
      • SQUARE
      • TAN
    • Operators
      • Overview
      • AND
      • Addition and concatenation (+)
      • BETWEEN
      • Comparison
      • Division (/)
      • IN
      • IS FALSE
      • IS TRUE
      • LIKE
      • Modulo (%)
      • Multiplication (*)
      • NOT
      • Negation (-)
      • OR
      • Power (^)
      • Subtraction (-)
    • String functions
      • Overview
      • ASCII
      • CHAR
      • CONCAT
      • CONTAINS
      • ENDSWITH
      • FIND
      • ICONTAINS
      • IENDSWITH
      • ISTARTSWITH
      • LEFT
      • LEN
      • LOWER
      • LTRIM
      • REGEXP_EXTRACT
      • REGEXP_EXTRACT_NTH
      • REGEXP_MATCH
      • REGEXP_REPLACE
      • REPLACE
      • RIGHT
      • RTRIM
      • SPACE
      • SPLIT
      • STARTSWITH
      • SUBSTR
      • TRIM
      • UPPER
      • UTF8
    • Time series functions
      • Overview
      • AGO
      • AT_DATE
    • Type conversion functions
      • Overview
      • BOOL
      • DATE
      • DATETIME
      • DATETIME_PARSE
      • DATE_PARSE
      • DB_CAST
      • FLOAT
      • GEOPOINT
      • GEOPOLYGON
      • INT
      • STR
    • Window functions
      • Overview
      • AVG
      • AVG_IF
      • COUNT
      • COUNT_IF
      • LAG
      • MAVG
      • MAX
      • MCOUNT
      • MIN
      • MMAX
      • MMIN
      • MSUM
      • RANK
      • RANK_DENSE
      • RANK_PERCENTILE
      • RANK_UNIQUE
      • RAVG
      • RCOUNT
      • RMAX
      • RMIN
      • RSUM
      • SUM
      • SUM_IF
    • Function Availability
  • Questions and answers
  1. Function reference
  2. String functions
  3. REGEXP_EXTRACT_NTH

REGEXP_EXTRACT_NTH

    Syntax

    REGEXP_EXTRACT_NTH( string, pattern, match_index )
    

    Description

    Returns a substring string that matches the regular expression pattern pattern starting from the specified index.

    Argument types:

    • string — String
    • pattern — String
    • match_index — Integer

    Return type: String

    Note

    Only constant values are accepted for arguments (pattern).

    Note

    See the documentation of the data source to clarify the regular expression syntax.

    Use the ClickHouse syntax to create regular expressions in materialized datasets.

    Examples

    REGEXP_EXTRACT_NTH("RU 912 EN 873", "[A-Z]+\s+(\d+)", 2) = "873"
    

    Data source support

    Materialized Dataset, ClickHouse 1.1, MySQL 8.0.12, Oracle Database 12c (12.1), PostgreSQL 9.3.

    Language / Region
    Careers
    Privacy policy
    Terms of use
    Brandbook
    © 2021 Yandex.Cloud LLC