Yandex.Cloud
  • Services
  • Why Yandex.Cloud
  • Solutions
  • Pricing
  • Documentation
  • Contact us
Get started
Yandex DataLens
  • Getting started
  • Use cases
    • All use cases
    • Visualizing data from a CSV file
    • Visualizing data from a ClickHouse database
    • Visualizing data from Yandex.Metriсa
    • Visualizing data from Yandex.Metrica Logs API
    • Publishing a chart with a map from a CSV file to DataLens Public
    • Visualizing data from AppMetrica
    • Visualizing geodata from a CSV file
  • Step-by-step instructions
    • All instructions
    • Working with connections
      • Creating a ClickHouse connection
      • Creating a connection to a CSV file
      • Creating a MySQL connection
      • Creating a PostgreSQL connection
      • Creating an MS SQL Server connection
      • Creating an Oracle Database connection
      • Creating a Yandex.Metrica API connection
      • Creating a Yandex.Metrica Logs API connection
      • Creating an AppMetrica connection
      • Managing connection access
    • Working with datasets
      • Create dataset
      • Creating a data field
      • Creating a calculated data field
      • Updating fields in datasets
      • Dataset materialization
      • Managing dataset access
      • Managing access to data rows
    • Working with charts
      • Creating a line chart
      • Creating an area chart
      • Creating a pie chart
      • Creating a column chart
      • Creating a bar chart
      • Creating a map
      • Creating a table
      • Creating a pivot table
      • Publishing a chart
      • Managing chart access
    • Working with dashboards
      • Creating dashboards
      • Adding charts to dashboards
      • Adding selectors to dashboards
      • Publishing dashboards
      • Managing dashboard access
    • Working with permissions
      • Granting permissions
      • Deleting permissions
      • Request permissions
  • Concepts
    • Overview
    • Connections
    • Data types
    • Datasets
      • Overview
      • Data model
      • Dataset settings
    • Charts
    • Dashboards
    • Using Markdown in DataLens
    • DataLens Public
    • Calculated fields
    • Marketplace
    • Backups in DataLens
    • Quotas and limits
  • Access management
    • Managing access to DataLens
    • Managing access at the data row level
  • Pricing policy
    • Current pricing policy
    • Archive
      • Policy before March 1, 2021
  • Function reference
    • All Functions
    • Aggregate functions
      • Overview
      • ALL_CONCAT
      • ANY
      • ARG_MAX
      • ARG_MIN
      • AVG
      • AVG_IF
      • COUNT
      • COUNTD
      • COUNTD_APPROX
      • COUNTD_IF
      • COUNT_IF
      • MAX
      • MEDIAN
      • MIN
      • QUANTILE
      • QUANTILE_APPROX
      • STDEV
      • STDEVP
      • SUM
      • SUM_IF
      • TOP_CONCAT
      • VAR
      • VARP
    • Date/Time functions
      • Overview
      • DATEADD
      • DATEPART
      • DATETRUNC
      • DAY
      • DAYOFWEEK
      • HOUR
      • MINUTE
      • MONTH
      • NOW
      • SECOND
      • TODAY
      • WEEK
      • YEAR
    • Geographical functions
      • Overview
      • GEOCODE
      • GEOINFO
      • TOPONYM_TO_GEOPOINT
      • TOPONYM_TO_GEOPOLYGON
    • Logical functions
      • Overview
      • CASE
      • IF
      • IFNULL
      • ISNULL
      • ZN
    • Text markup functions
      • Overview
      • BOLD
      • ITALIC
      • MARKUP
      • URL
    • Mathematical functions
      • Overview
      • ABS
      • ACOS
      • ASIN
      • ATAN
      • ATAN2
      • CEILING
      • COS
      • COT
      • DEGREES
      • DIV
      • EXP
      • FLOOR
      • GREATEST
      • LEAST
      • LN
      • LOG
      • LOG10
      • PI
      • POWER
      • RADIANS
      • ROUND
      • SIGN
      • SIN
      • SQRT
      • SQUARE
      • TAN
    • Operators
      • Overview
      • AND
      • Addition and concatenation (+)
      • BETWEEN
      • Comparison
      • Division (/)
      • IN
      • IS FALSE
      • IS TRUE
      • LIKE
      • Modulo (%)
      • Multiplication (*)
      • NOT
      • Negation (-)
      • OR
      • Power (^)
      • Subtraction (-)
    • String functions
      • Overview
      • ASCII
      • CHAR
      • CONCAT
      • CONTAINS
      • ENDSWITH
      • FIND
      • ICONTAINS
      • IENDSWITH
      • ISTARTSWITH
      • LEFT
      • LEN
      • LOWER
      • LTRIM
      • REGEXP_EXTRACT
      • REGEXP_EXTRACT_NTH
      • REGEXP_MATCH
      • REGEXP_REPLACE
      • REPLACE
      • RIGHT
      • RTRIM
      • SPACE
      • SPLIT
      • STARTSWITH
      • SUBSTR
      • TRIM
      • UPPER
      • UTF8
    • Time series functions
      • Overview
      • AGO
      • AT_DATE
    • Type conversion functions
      • Overview
      • BOOL
      • DATE
      • DATETIME
      • DATETIME_PARSE
      • DATE_PARSE
      • DB_CAST
      • FLOAT
      • GEOPOINT
      • GEOPOLYGON
      • INT
      • STR
    • Window functions
      • Overview
      • AVG
      • AVG_IF
      • COUNT
      • COUNT_IF
      • LAG
      • MAVG
      • MAX
      • MCOUNT
      • MIN
      • MMAX
      • MMIN
      • MSUM
      • RANK
      • RANK_DENSE
      • RANK_PERCENTILE
      • RANK_UNIQUE
      • RAVG
      • RCOUNT
      • RMAX
      • RMIN
      • RSUM
      • SUM
      • SUM_IF
    • Function Availability
  • Questions and answers
  1. Function reference
  2. Time series functions
  3. Overview

Time series functions

  • AGO
  • AT_DATE

Time series functions provide various ways to look up values corresponding to a specific time or offset along a given time axis.

In a certain way this functionality is similar to the window function LAG.
The main difference is that LAG is indifferent to the actual values of the dimensions being used, and operates over positional offsets specified in rows, while time series functions use specific values and value offsets in date/time units like days, hours or seconds. This makes them sensitive to missing values in data. As a result of this AGO(SUM([Sales]), [Date], "year") will return NULL if the same-date row for the previous year is missing.

AGO

Syntax:AGO( measure, date_dimension [ , unit [ , number ] ] )

Re-evaluate measure for a date/time with a given offset.
The date_dimension argument is the dimension along which the offset is made.
The number argument is an integer. It can be negative.
The unit argument takes the following values:

  • "year";
  • "month";
  • "day";
  • "hour";
  • "minute";
  • "second".

Can also be used as AGO( measure, date_dimension, number ). In this case, the third argument is interpreted as the number of days.

This non-window function does not support window options such as BEFORE FILTER BY.

See also AT_DATE, LAG.

AT_DATE

Syntax:AT_DATE( measure, date_dimension, date_expr )

Re-evaluate measure for a date/time specified by date_expr.
The date_dimension argument is the dimension along which the offset is made.

See also AGO, LAG.

In this article:
  • AGO
  • AT_DATE
Language / Region
Careers
Privacy policy
Terms of use
Brandbook
© 2021 Yandex.Cloud LLC