Yandex.Cloud
  • Services
  • Why Yandex.Cloud
  • Solutions
  • Pricing
  • Documentation
  • Contact us
Get started
Yandex DataSphere
  • Getting started
  • Step-by-step instructions
    • All instructions
    • Creating a project
    • Installing dependencies
    • Running sample code in a notebook
    • Versioning. Working with checkpoints
    • Managing computing resources
    • Clearing the interpreter state
    • Sharing a notebook
      • Publishing a notebook
      • Exporting a project
    • Changing a name or description
    • Deleting a project
    • Working with Git
    • Setting up integration with Data Proc
  • Concepts
    • Overview
    • Project
    • List of pre-installed software
    • Available commands
    • Computing resource configurations
    • Integration with version and data control systems
    • Integration with Data Proc
    • Using TensorBoard in DataSphere
    • Background operations
    • Quotas and limits
  • Use cases
    • Voice recognition
  • Access management
  • Pricing policy
  • Questions and answers
  1. Concepts
  2. List of pre-installed software

List of pre-installed software

  • List of pre-installed packages
  • Package versions
  • Updating

Packages for data analysis and machine learning are pre-installed in DataSphere. If you are missing a package, you can install it right from the notebook cell.

List of pre-installed packages

A-E
  • absl-py
  • addict
  • antlr4-python3-runtime
  • appdirs
  • argon2-cffi
  • asn1crypto
  • astor
  • asttokens
  • async-generator
  • atpublic
  • attrs
  • audioread
  • autograd
  • aws-sam-translator
  • aws-xray-sdk
  • backcall
  • bcrypt
  • BeautifulSoup4
  • bleach
  • blis
  • boto
  • boto3
  • botocore
  • Bottleneck
  • cached-property
  • cachetools
  • catalogue
  • CatBoost
  • certifi
  • CFFI
  • cfn-lint
  • chardet
  • Click
  • cloud-ml
  • cloudpickle
  • colorama
  • commonmark
  • configobj
  • configparser
  • cryptography
  • cycler
  • cymem
  • Cython
  • Dask
  • dataclasses
  • DAWG-Python
  • decorator
  • defusedxml
  • dill
  • distro
  • docker
  • docopt
  • docutils
  • dpath
  • DVC
  • ecdsa
  • enot
  • enot-core
  • enot-utils
  • entrypoints
  • executing
F-L
  • fairseq
  • fastai
  • fastprogress
  • filelock
  • flatten-json
  • flufl.lock
  • FSSPEC
  • funcy
  • future
  • gast
  • Gensim
  • gitdb
  • GitPython
  • google-api-core
  • Google API Python Client
  • googleapis-common-protos
  • google-auth
  • google-auth-httplib2
  • googledrivedownloader
  • google-pasta
  • grandalf
  • Graphviz
  • gRPCio
  • h5py
  • httplib2
  • hydra-core
  • idna
  • importlib-metadata
  • importlib-resources
  • iniconfig
  • ipykernel
  • ipystate
  • ipython
  • ipywidgets
  • jax
  • jaxlib
  • jedi
  • Jinja2
  • jmespath
  • joblib
  • jsondiff
  • jsonpatch
  • jsonpath-ng
  • jsonpickle
  • jsonpointer
  • jsonschema
  • junit-xml
  • jupyter-client
  • jupyter-core
  • jupyterlab-pygments
  • kaggle
  • Keras
  • Keras-Applications
  • Keras-Preprocessing
  • keyring
  • keyrings.alt
  • kiwisolver
  • librosa
  • LightGBM
  • littleutils
  • llvmlite
M-P
  • Markdown
  • MarkupSafe
  • Matplotlib
  • midi2audio
  • mistune
  • ml-kernel
  • MMCV-full
  • mmdet
  • mmpycocotools
  • Mock
  • more-itertools
  • Moto
  • murmurhash
  • music21
  • nanotime
  • nbclient
  • nbconvert
  • nbformat
  • nest-asyncio
  • NetworkX
  • NLTK
  • notebook
  • numba
  • NumExpr
  • NumPy
  • nvidia-ml-py3
  • nvidia-smi
  • oauth2client
  • OmegaConf
  • OpenCV-Python
  • opt-einsum
  • packaging
  • Pandas
  • pandocfilters
  • Paramiko
  • parso
  • pathspec
  • Pexpect
  • pickleshare
  • Pillow
  • pip
  • Plac
  • plotly
  • pluggy
  • ply
  • Pooch
  • portalocker
  • preshed
  • prometheus-client
  • promise
  • prompt-toolkit
  • protobuf
  • psutil
  • Ptyprocess
  • py
  • PyArrow
  • pyasn1
  • pyasn1-modules
  • pybase64
  • pycparser
  • PyCrypto
  • PycURL
  • pydot
  • Pygments
  • PyGObject
  • pygtrie
  • Pympler
  • PyNaCl
  • PyParsing
  • Pyrsistent
  • pytest
  • python-apt
  • python-dateutil
  • python-jose
  • python-slugify
  • pytorch-ranger
  • pytz
  • pyxdg
  • PyYAML
  • PyZMQ
R-Z
  • regex
  • Requests
  • resampy
  • responses
  • retrying
  • Rich
  • RSA
  • ruamel.yaml
  • ruamel.yaml.clib
  • S3Fs
  • s3transfer
  • sacrebleu
  • sacremoses
  • scikit-learn
  • Scipy
  • scp
  • SecretStorage
  • Send2Trash
  • sentencepiece
  • setuptools
  • SharedArray
  • shortuuid
  • shtab
  • Six
  • slugify
  • smart-open
  • smmap
  • sorcery
  • sounddevice
  • SoundFile
  • soupsieve
  • spaCy
  • srsly
  • sshpubkeys
  • stt-metrics
  • tabulate
  • tblib
  • tensorboard
  • tensorboardX
  • TensorFlow
  • TensorFlow Datasets
  • tensorflow-estimator
  • tensorflow-gpu
  • tensorflow-metadata
  • termcolor
  • terminado
  • terminaltables
  • testpath
  • text-unidecode
  • thinc
  • Tokenizers
  • toml
  • Torch
  • torch-optimizer
  • torchvision
  • Tornado
  • tqdm
  • Traitlets
  • Transformers
  • typing-extensions
  • unattended-upgrades
  • uritemplate
  • urllib3
  • Virtualenv
  • Voluptuous
  • wasabi
  • wcwidth
  • webcolors
  • webencodings
  • websocket-client
  • Werkzeug
  • wget
  • wheel
  • widgetsnbextension
  • wrapt
  • XGBoost
  • xmltodict
  • xxhash
  • YaDisk
  • yapf
  • zc.lockfile
  • zipp

Package versions

To view the version of the installed package, in the notebook cell, run the command:

%pip show <Package name>

To view the list of installed packages and their versions, in the notebook cell, run the command:

%pip list

Updating

You can both upgrade any pre-installed package to a later version or roll it back to an earlier version.
Upgraded versions are preserved when you change environments or restart your project.

To upgrade a library to the latest version, run the following command in the notebook cell:

%pip install <library name> - U

For example, to upgrade TensorFlow to its latest version, run the command:

%pip install tensorflow -U

To upgrade a library to a specific version, run the following command in the notebook cell:

%pip install <library name>==<version>

For example:

%pip install tensorflow==2.3.1

Note that TensorFlow version 1.15 is still installed by default.

Warning

Updating a pre-installed library may introduce new data types that are not supported in DataSphere and not versioned. You'll see a warning when you run cells with such types. In this case, please notify technical support about the libraries upgraded and non-supported data types. To be sure that versioning works correctly, roll back the library version.

See also

  • Installing dependencies
  • Computing resource configurations
  • Quotas and limits
  • All instructions
In this article:
  • List of pre-installed packages
  • Package versions
  • Updating
Language / Region
Careers
Privacy policy
Terms of use
Brandbook
© 2021 Yandex.Cloud LLC