Yandex Cloud
  • Services
  • Solutions
  • Why Yandex Cloud
  • Pricing
  • Documentation
  • Contact us
Get started
Language / Region
© 2022 Yandex.Cloud LLC
Yandex DataLens
  • Getting started
  • Practical guidelines
    • All tutorials
    • Visualizing data from a CSV file
    • Creating and publishing a chart with a map of Moscow from a CSV file
    • Analyzing a retail chain's sales from a ClickHouse database
    • Analyzing public data on road accidents in Russia
    • Analyzing sales and locations of pizzerias based on data from Clickhouse DB and Marketplace
    • Web analytics with a connection to Yandex Metrica
    • Web analytics with funnels and cohorts calculated based on Yandex Metrica data
    • Mobile app analytics based on AppMetrica data
    • Analyzing Yandex Music podcast statistics (for podcasters)
    • Visualizing data with a QL chart
    • Building customer journey charts based on AppMetrica data
  • Concepts
    • Service overview
    • Connection
    • Data types
    • Datasets
      • Overview
      • Data model
      • Dataset settings
    • Charts
      • Overview
      • Chart types
      • Chart settings
    • Dashboards
    • Combining data
    • Using Markdown in DataLens
    • DataLens Public
    • Aggregations in DataLens
    • Calculated fields
      • Overview
      • Formula syntax
    • Parameterization
    • Marketplace
    • Backups
    • Caching
    • Quotas and limits
    • Organizations in DataLens
  • Step-by-step instructions
    • All instructions
    • Working with connections
      • Creating a ClickHouse connection
      • Creating a connection to a CSV file
      • Creating a Google Sheets connection
      • Creating a MySQL connection
      • Creating a PostgreSQL connection
      • Creating an MS SQL Server connection
      • Creating an Oracle Database connection
      • Creating a YDB connection
      • Creating a Yandex Metrica API connection
      • Creating an AppMetrica connection
      • Creating a Yandex Cloud Billing connection
      • Creating a Greenplum connection
      • Managing connection access
    • Working with datasets
      • Creating a dataset
      • Combining data from multiple tables
      • Combining data from multiple CSV connections
      • Creating a data field
      • Creating a calculated data field
      • Creating a default filter for new charts
      • Updating fields in datasets
      • Describing a dataset via a source SQL query
      • Dataset materialization
      • Managing dataset access
      • Managing access to data rows
      • Adding parameters to a dataset
    • Working with charts
      • Creating a line chart
      • Creating an area chart
      • Creating a pie chart
      • Creating a donut chart
      • Creating a column chart
      • Creating a bar chart
      • Creating a scatter chart
      • Creating a map
      • Creating a table
      • Creating a pivot table
      • Creating an indicator
      • Creating a tree chart
      • Creating a QL chart
      • Creating a multi-dataset chart
      • Adding a hierarchy
      • Configuring the navigator
      • Publishing a chart
      • Managing chart access
      • Adding guid as a parameter
      • Adding parameters to a chart
    • Working with dashboards
      • Creating dashboards
      • Adding charts to dashboards
      • Adding selectors to dashboards
      • Creating an alias
      • Deleting an alias field
      • Publishing dashboards
      • Managing dashboard access
      • Dashboard auto-update
    • Working with permissions
      • Granting permissions
      • Deleting permissions
      • Request permissions
    • Working with DataLens Marketplace
      • Adding a product from Marketplace
      • Removing a product from Marketplace
      • Creating and using a connector (for partners)
    • Working with organizations
      • Switching between DataLens instances
  • Access management
    • Managing access to DataLens
    • Managing access at the data row level
  • Pricing policy
  • Function reference
    • All Functions
    • Aggregate functions
      • Overview
      • ALL_CONCAT
      • ANY
      • ARG_MAX
      • ARG_MIN
      • AVG
      • AVG_IF
      • COUNT
      • COUNTD
      • COUNTD_APPROX
      • COUNTD_IF
      • COUNT_IF
      • MAX
      • MEDIAN
      • MIN
      • QUANTILE
      • QUANTILE_APPROX
      • STDEV
      • STDEVP
      • SUM
      • SUM_IF
      • TOP_CONCAT
      • VAR
      • VARP
    • Array functions
      • Overview
      • ARRAY
      • ARR_AVG
      • ARR_MAX
      • ARR_MIN
      • ARR_PRODUCT
      • ARR_STR
      • ARR_SUM
      • CAST_ARR_FLOAT
      • CAST_ARR_INT
      • CAST_ARR_STR
      • CONTAINS
      • COUNT_ITEM
      • GET_ITEM
      • REPLACE
      • SLICE
      • STARTSWITH
      • UNNEST
    • Date/Time functions
      • Overview
      • DATEADD
      • DATEPART
      • DATETRUNC
      • DAY
      • DAYOFWEEK
      • HOUR
      • MINUTE
      • MONTH
      • NOW
      • QUARTER
      • SECOND
      • TODAY
      • WEEK
      • YEAR
    • Geographical functions
      • Overview
      • GEOCODE
      • GEOINFO
      • TOPONYM_TO_GEOPOINT
      • TOPONYM_TO_GEOPOLYGON
    • Logical functions
      • Overview
      • CASE
      • IF
      • IFNULL
      • ISNULL
      • ZN
    • Mathematical functions
      • Overview
      • ABS
      • ACOS
      • ASIN
      • ATAN
      • ATAN2
      • CEILING
      • COMPARE
      • COS
      • COT
      • DEGREES
      • DIV
      • EXP
      • FLOOR
      • GREATEST
      • LEAST
      • LN
      • LOG
      • LOG10
      • PI
      • POWER
      • RADIANS
      • ROUND
      • SIGN
      • SIN
      • SQRT
      • SQUARE
      • TAN
    • Operators
      • Overview
      • AND
      • Addition and concatenation (+)
      • BETWEEN
      • Comparison
      • Division (/)
      • IN
      • IS FALSE
      • IS TRUE
      • LIKE
      • Modulo (%)
      • Multiplication (*)
      • NOT
      • Negation (-)
      • OR
      • Power (^)
      • Subtraction (-)
    • String functions
      • Overview
      • ASCII
      • CHAR
      • CONCAT
      • CONTAINS
      • ENDSWITH
      • FIND
      • ICONTAINS
      • IENDSWITH
      • ISTARTSWITH
      • LEFT
      • LEN
      • LOWER
      • LTRIM
      • REGEXP_EXTRACT
      • REGEXP_EXTRACT_NTH
      • REGEXP_MATCH
      • REGEXP_REPLACE
      • REPLACE
      • RIGHT
      • RTRIM
      • SPACE
      • SPLIT
      • STARTSWITH
      • SUBSTR
      • TRIM
      • UPPER
      • UTF8
    • Text markup functions
      • Overview
      • BOLD
      • ITALIC
      • MARKUP
      • URL
    • Time series functions
      • Overview
      • AGO
      • AT_DATE
    • Type conversion functions
      • Overview
      • BOOL
      • DATE
      • DATETIME
      • DATETIME_PARSE
      • DATE_PARSE
      • DB_CAST
      • FLOAT
      • GEOPOINT
      • GEOPOLYGON
      • INT
      • STR
    • Window functions
      • Overview
      • AVG
      • AVG_IF
      • COUNT
      • COUNT_IF
      • FIRST
      • LAG
      • LAST
      • MAVG
      • MAX
      • MCOUNT
      • MIN
      • MMAX
      • MMIN
      • MSUM
      • RANK
      • RANK_DENSE
      • RANK_PERCENTILE
      • RANK_UNIQUE
      • RAVG
      • RCOUNT
      • RMAX
      • RMIN
      • RSUM
      • SUM
      • SUM_IF
    • Function Availability
  • Tutorial on functions
    • Aggregate functions
    • Window functions
    • LOD expressions and filtering in aggregate functions
  • Public materials
    • Educational projects
    • Webinars and conferences
    • Articles and publications
    • Public dashboards and charts
  • Troubleshooting
    • Questions and answers
    • DataLens errors
  1. Function reference
  2. Type conversion functions
  3. DATE

DATE

Written by
Yandex Cloud
,
improved by
amatol

    Syntax

    DATE( expression [ , timezone ] )
    

    Description

    Warning

    For ClickHouse data sources, numeric expression values less than or equal to 65535 are interpreted as the number of days (not seconds, like in all other cases) since January 1st 1970. This is the result of the behavior of available ClickHouse functions.

    One way to surpass this is to use the following formula: DATE(DATETIME([value])). The result is more consistent, but is likely to be much slower.

    Converts the expression expression to date format.

    The date must be in the format YYYY-MM-DD.

    If expression is a number, then the timezone option can be used to convert the date to the specified time zone.

    Argument types:

    • expression — Date | Datetime | Fractional number | Integer | String
    • timezone — String

    Return type: Date

    Note

    Only constant values are accepted for the arguments (timezone).

    Note

    Argument timezone is available only for Materialized Dataset, ClickHouse sources.

    Example

    DATE("2019-01-23") = #2019-01-23#
    

    Data source support

    Materialized Dataset, ClickHouse 19.13, Microsoft SQL Server 2017 (14.0), MySQL 5.6, Oracle Database 12c (12.1), PostgreSQL 9.3, YDB.

    Was the article helpful?

    Language / Region
    © 2022 Yandex.Cloud LLC