Yandex Cloud
  • Services
  • Solutions
  • Why Yandex Cloud
  • Blog
  • Pricing
  • Documentation
  • Contact us
Get started
Language / Region
Yandex project
© 2023 Yandex.Cloud LLC
Yandex DataLens
  • Getting started
  • Practical guidelines
    • All tutorials
    • Visualizing data from a CSV file
    • Creating and publishing a chart with a map of Moscow from a CSV file
    • Analyzing a retail chain's sales from a ClickHouse database
    • Analyzing public data on road accidents in Russia
    • Analyzing sales and locations of pizzerias based on data from ClickHouse DB and Marketplace
    • Web analytics with a connection to Yandex Metrica
    • Web analytics with funnels and cohorts calculated based on Yandex Metrica data
    • Mobile app analytics based on AppMetrica data
    • Analyzing Yandex Music podcast statistics (for podcasters)
    • Visualizing data with a QL chart
    • Visualizing data using parameters
    • Visualizing Yandex Monitoring data
    • Building customer journey charts based on AppMetrica data
  • Concepts
    • Service overview
    • Organizations in DataLens
    • Connection
    • Data types
    • Datasets
      • Overview
      • Data model
      • Dataset settings
    • Charts
      • Overview
      • Chart settings
      • Measure Values and Measure Names
    • Dashboards
    • Joining data
    • Using Markdown in DataLens
    • DataLens Public
    • Calculated fields
      • Overview
      • Formula syntax
    • Parameterization
    • Marketplace
    • Backups
    • Caching
    • Quotas and limits
  • Step-by-step instructions
    • All instructions
    • Working with connections
      • Creating a ClickHouse connection
      • Creating a connection to a file
      • Creating a Google Sheets connection
      • Creating a MySQL connection
      • Creating a PostgreSQL connection
      • Creating a SQL Server connection
      • Creating a BigQuery connection
      • Creating an Oracle Database connection
      • Creating a YDB connection
      • Creating a Greenplum® connection
      • Creating a Prometheus connection
      • Creating a Yandex Monitoring connection
      • Creating a Yandex Metrica API connection
      • Creating an AppMetrica connection
      • Creating a Yandex Cloud Billing connection
      • Managing connection access
    • Working with datasets
      • Creating a dataset
      • Combining data from multiple tables
      • Creating a data field
      • Creating a calculated data field
      • Creating a default filter for new charts
      • Updating fields in datasets
      • Describing a dataset via a source SQL query
      • Managing dataset access
      • Managing access to data rows
      • Adding parameters to a dataset
    • Working with charts
      • Creating a chart
      • Creating a QL chart
      • Creating a multi-dataset chart
      • Adding a hierarchy
      • Configuring the navigator
      • Publishing a chart
      • Managing chart access
      • Adding ID as a parameter
      • Adding parameters to a chart
      • Configuring the display of null values
    • Working with dashboards
      • Creating dashboards
      • Adding charts to dashboards
      • Adding selectors to dashboards
      • Creating an alias
      • Deleting an alias field
      • Publishing dashboards
      • Managing dashboard access
      • Adding parameters to a dashboard
      • Dashboard auto-update
      • Widget display order on a mobile device
    • Working with permissions
      • Granting permissions
      • Deleting permissions
      • Request permissions
    • Working with DataLens Marketplace
      • Adding a product from Marketplace
      • Removing a product from Marketplace
      • Creating and connecting a connector (for partners)
    • Working with organizations
      • Switching between DataLens instances
  • Access management
    • Managing access to DataLens
    • Managing access at the data row level
  • Pricing policy
  • Visualization reference
    • All visualizations
    • Line chart
    • Stacked area chart
    • Normalized stacked area chart
    • Column chart
    • Normalized column chart
    • Bar chart
    • Normalized bar chart
    • Scatter chart
    • Pie chart
    • Indicator
    • Tree chart
    • Donut chart
    • Table
    • Pivot table
    • Map
      • Overview
      • Point map
      • Point map with clusters
      • Polyline map
      • Choropleth map
      • Heat map
    • Combined chart
  • Function reference
    • All Functions
    • Aggregate functions
      • Overview
      • ALL_CONCAT
      • ANY
      • ARG_MAX
      • ARG_MIN
      • AVG
      • AVG_IF
      • COUNT
      • COUNTD
      • COUNTD_APPROX
      • COUNTD_IF
      • COUNT_IF
      • MAX
      • MEDIAN
      • MIN
      • QUANTILE
      • QUANTILE_APPROX
      • STDEV
      • STDEVP
      • SUM
      • SUM_IF
      • TOP_CONCAT
      • VAR
      • VARP
    • Array functions
      • Overview
      • ARRAY
      • ARR_AVG
      • ARR_MAX
      • ARR_MIN
      • ARR_PRODUCT
      • ARR_REMOVE
      • ARR_STR
      • ARR_SUM
      • CAST_ARR_FLOAT
      • CAST_ARR_INT
      • CAST_ARR_STR
      • CONTAINS
      • COUNT_ITEM
      • GET_ITEM
      • REPLACE
      • SLICE
      • STARTSWITH
      • UNNEST
    • Date/Time functions
      • Overview
      • DATEADD
      • DATEPART
      • DATETRUNC
      • DAY
      • DAYOFWEEK
      • HOUR
      • MINUTE
      • MONTH
      • NOW
      • QUARTER
      • SECOND
      • TODAY
      • WEEK
      • YEAR
    • Logical functions
      • Overview
      • CASE
      • IF
      • IFNULL
      • ISNULL
      • ZN
    • Mathematical functions
      • Overview
      • ABS
      • ACOS
      • ASIN
      • ATAN
      • ATAN2
      • CEILING
      • COMPARE
      • COS
      • COT
      • DEGREES
      • DIV
      • EXP
      • FLOOR
      • GREATEST
      • LEAST
      • LN
      • LOG
      • LOG10
      • PI
      • POWER
      • RADIANS
      • ROUND
      • SIGN
      • SIN
      • SQRT
      • SQUARE
      • TAN
    • Operators
      • Overview
      • AND
      • Addition and concatenation (+)
      • BETWEEN
      • Comparison
      • Division (/)
      • IN
      • IS FALSE
      • IS TRUE
      • LIKE
      • Modulo (%)
      • Multiplication (*)
      • NOT
      • Negation (-)
      • OR
      • Power (^)
      • Subtraction (-)
    • String functions
      • Overview
      • ASCII
      • CHAR
      • CONCAT
      • CONTAINS
      • ENDSWITH
      • FIND
      • ICONTAINS
      • IENDSWITH
      • ISTARTSWITH
      • LEFT
      • LEN
      • LOWER
      • LTRIM
      • REGEXP_EXTRACT
      • REGEXP_EXTRACT_NTH
      • REGEXP_MATCH
      • REGEXP_REPLACE
      • REPLACE
      • RIGHT
      • RTRIM
      • SPACE
      • SPLIT
      • STARTSWITH
      • SUBSTR
      • TRIM
      • UPPER
      • UTF8
    • Text markup functions
      • Overview
      • BOLD
      • ITALIC
      • MARKUP
      • URL
    • Time series functions
      • Overview
      • AGO
      • AT_DATE
    • Type conversion functions
      • Overview
      • BOOL
      • DATE
      • DATETIME
      • DATETIME_PARSE
      • DATE_PARSE
      • DB_CAST
      • FLOAT
      • GEOPOINT
      • GEOPOLYGON
      • INT
      • STR
    • Window functions
      • Overview
      • AVG
      • AVG_IF
      • COUNT
      • COUNT_IF
      • FIRST
      • LAG
      • LAST
      • MAVG
      • MAX
      • MCOUNT
      • MIN
      • MMAX
      • MMIN
      • MSUM
      • RANK
      • RANK_DENSE
      • RANK_PERCENTILE
      • RANK_UNIQUE
      • RAVG
      • RCOUNT
      • RMAX
      • RMIN
      • RSUM
      • SUM
      • SUM_IF
    • Function Availability
  • Function tutorials
    • Aggregate functions
    • Window functions
    • LOD expressions and filtering in aggregate functions
  • Public materials
    • Educational projects
    • Webinars and conferences
    • Articles and publications
    • Public dashboards and charts
  • Troubleshooting
    • Questions and answers
    • DataLens errors
  1. Step-by-step instructions
  2. Working with charts
  3. Creating a multi-dataset chart

Creating a multi-dataset chart

Written by
Yandex Cloud

    Note

    In multi-dataset charts, only linked dimensions (available in all datasets) can be used.

    To create a multi-dataset chart:

    1. On the Yandex DataLens homepage, click Create chart.
    2. Under Dataset, select a dataset for visualization. If you don't have a dataset, create one.
    3. Add another dataset. To do this, under the dataset list, click Add dataset and select the dataset to visualize.
    4. When you add a DataLens dataset, a link is automatically created based on the first field name and data type match. In the resulting dataset link configuration window, click Save.
    5. Repeat steps 3-4 as required.
    6. Select your chart type, such as Line chart.
    7. Drag a dimension from the dataset to the X section. The values are displayed in the lower part of the chart on the X-axis.
    8. Drag measures from different datasets to the Y section. The values are displayed as charts on the Y-axis.
    9. Drag a dimension or measure from the dataset to the Filters section. The field can be empty. In this case, no filters are applied.
    Example of creating a multi-dataset chart

    We'll use a demo ClickHouse database with sales data from a Moscow store chain as our data source. For an example of creating a connection, see the use case.

    1. Build two datasets using a SQL query against the data source:

    • SQL query code for the count_client_sql dataset:
    SELECT samples.MS_Shops.ShopName, count(t2.ClientID) AS count_clients
    FROM samples.MS_Shops,
    (SELECT DISTINCT samples.MS_Shops.ShopID, samples.MS_Shops.ShopName, samples.MS_SalesFacts.ClientID
    FROM samples.MS_SalesFacts
    INNER JOIN samples.MS_Shops 
    ON samples.MS_Shops.ShopID=samples.MS_SalesFacts.ShopID) AS t2
    WHERE t2.ShopName=samples.MS_Shops.ShopName
    GROUP BY ShopName
    
    • SQL query code for the count_sales_sql dataset:
    SELECT DISTINCT samples.MS_Shops.ShopName, COUNT(*) AS count_sales
    FROM samples.MS_SalesFacts
    INNER JOIN samples.MS_Shops 
    ON samples.MS_Shops.ShopID=samples.MS_SalesFacts.ShopID
    GROUP BY ShopName
    

    2. On the Yandex DataLens homepage, click Create chart.
    3. Under Dataset, select the count_client_sql dataset.

    image

    4. Select Line chart as your chart type.
    5. Drag the ShopName dimension from your dataset to the X section.This will display the values at the bottom of the chart along the X axis.
    6. Drag the count_clients indicator from your dataset to the Y section. This will display the values along the Y axis as a chart.

    image

    7. Under the dataset list, click Add dataset and select count_sales_sql.
    8. In the resulting window, a link is automatically created based on the ShopName field. Click Save.

    image

    9. Drag the count_sales indicator from your dataset to the Y section.This will display the values along the Y axis as a second chart.

    image

    10. At the top of the screen, click Save. In the resulting window, enter the following name for the chart: Customers and sales by store - Line chart. Then click Save.

    image

    Was the article helpful?

    Language / Region
    Yandex project
    © 2023 Yandex.Cloud LLC